def
__eq__
(arg__1)
def
__imul__
(arg__1)
def
__mul__
(o)
def
__ne__
(arg__1)
def
__reduce__
()
def
__repr__
()
def
determinant
()
def
dx
()
def
dy
()
def
inverted
()
def
isIdentity
()
def
isInvertible
()
def
m11
()
def
m12
()
def
m21
()
def
m22
()
def
map
(a)
def
map
(a)
def
map
(l)
def
map
(l)
def
map
(p)
def
map
(p)
def
map
(p)
def
map
(r)
def
map
(x, y)
def
map
(x, y)
def
mapRect
(arg__1)
def
mapRect
(arg__1)
def
mapToPolygon
(r)
def
reset
()
def
rotate
(a)
def
scale
(sx, sy)
def
setMatrix
(m11, m12, m21, m22, dx, dy)
def
shear
(sh, sv)
def
translate
(dx, dy)
A matrix specifies how to translate, scale, shear or rotate the coordinate system, and is typically used when rendering graphics.
QMatrix, in contrast toQTransform, does not allow perspective transformations.QTransformis the recommended transformation class in Qt.A
QMatrixobject can be built using thesetMatrix(),scale(),rotate(),translate()andshear()functions. Alternatively, it can be built by applyingbasic matrix operations. The matrix can also be defined when constructed, and it can be reset to the identity matrix (the default) using thereset()函数。
QMatrixclass supports mapping of graphic primitives: A given point, line, polygon, region, or painter path can be mapped to the coordinate system defined by this matrix using themap()function. In case of a rectangle, its coordinates can be transformed using themapRect()function. A rectangle can also be transformed into a polygon (mapped to the coordinate system defined by this matrix), using themapToPolygon()函数。
QMatrixprovides theisIdentity()function which returnstrueif the matrix is the identity matrix, and theisInvertible()function which returnstrueif the matrix is non-singular (i.e. AB = BA = I). Theinverted()function returns an inverted copy of this matrix if it is invertible (otherwise it returns the identity matrix). In addition,QMatrixprovides thedeterminant()function returning the matrix’s determinant.Finally, the
QMatrixclass supports matrix multiplication, and objects of the class can be streamed as well as compared.
When rendering graphics, the matrix defines the transformations but the actual transformation is performed by the drawing routines in
QPainter.默认情况下,
QPainteroperates on the associated device’s own coordinate system. The standard coordinate system of aQPaintDevicehas its origin located at the top-left position. The x values increase to the right; y values increase downward. For a complete description, see the coordinate system 文档编制。
QPainterhas functions to translate, scale, shear and rotate the coordinate system without using aQMatrix。例如:
![]()
def paintEvent(self, event): painter = QPainter(self) painter.setPen(QPen(Qt.blue, 1, Qt.DashLine)) painter.drawRect(0, 0, 100, 100) painter.rotate(45) painter.setFont(QFont("Helvetica", 24)) painter.setPen(QPen(Qt.black, 1)) painter.drawText(20, 10, "QMatrix")Although these functions are very convenient, it can be more efficient to build a
QMatrix和调用setMatrix()if you want to perform more than a single transform operation. For example:
![]()
def paintEvent(self, event) painter = QPainter(self) painter.setPen(QPen(Qt.blue, 1, Qt.DashLine)) painter.drawRect(0, 0, 100, 100) matrix = QMatrix() matrix.translate(50, 50) matrix.rotate(45) matrix.scale(0.5, 1.0) painter.setMatrix(matrix) painter.setFont(QFont("Helvetica", 24)) painter.setPen(QPen(Qt.black, 1)) painter.drawText(20, 10, "QMatrix")
![]()
A
QMatrixobject contains a 3 x 3 matrix. Thedxanddyelements specify horizontal and vertical translation. Them11andm22elements specify horizontal and vertical scaling. And finally, them21andm12elements specify horizontal and vertical shearing .
QMatrixtransforms a point in the plane to another point using the following formulas:x' = m11*x + m21*y + dx y' = m22*y + m12*x + dyThe point (x, y) is the original point, and (x’, y’) is the transformed point. (x’, y’) can be transformed back to (x, y) by performing the same operation on the
inverted()matrix.The various matrix elements can be set when constructing the matrix, or by using the
setMatrix()function later on. They can also be manipulated using thetranslate(),rotate(),scale()andshear()convenience functions, The currently set values can be retrieved using them11(),m12(),m21(),m22(),dx()anddy()函数。Translation is the simplest transformation. Setting
dxanddywill move the coordinate systemdxunits along the X axis anddyunits along the Y axis. Scaling can be done by settingm11andm22. For example, settingm11to 2 andm22to 1.5 will double the height and increase the width by 50%. The identity matrix hasm11andm22set to 1 (all others are set to 0) mapping a point to itself. Shearing is controlled bym12andm21. Setting these elements to values different from zero will twist the coordinate system. Rotation is achieved by carefully setting both the shearing factors and the scaling factors.Here’s the combined transformations example using basic matrix operations:
![]()
def paintEvent(self, event) pi = 3.14 a = pi/180 * 45.0 sina = sin(a) cosa = cos(a) translationMatrix = QMatrix(1, 0, 0, 1, 50.0, 50.0) rotationMatrix = QMatrix(cosa, sina, -sina, cosa, 0, 0) scalingMatrix = QMatrix(0.5, 0, 0, 1.0, 0, 0) matrix = QMatrix() matrix = scalingMatrix * rotationMatrix * translationMatrix painter = QPainter(self) painter.setPen(QPen(Qt.blue, 1, Qt::DashLine)) painter.drawRect(0, 0, 100, 100) painter.setMatrix(matrix) painter.setFont(QFont("Helvetica", 24)) painter.setPen(QPen(Qt.black, 1)) painter.drawText(20, 10, "QMatrix")另请参阅
QMatrix
¶
QMatrix(other)
QMatrix(m11, m12, m21, m22, dx, dy)
- param m12
qreal- param dx
qreal- param dy
qreal- param other
- param m21
qreal- param m22
qreal- param m11
qreal
构造恒等矩阵。
All elements are set to zero except
m11
and
m22
(specifying the scale), which are set to 1.
另请参阅
构造矩阵采用元素
m11
,
m12
,
m21
,
m22
,
dx
and
dy
.
另请参阅
PySide2.QtGui.QMatrix.
__reduce__
(
)
¶
PyObject
PySide2.QtGui.QMatrix.
__repr__
(
)
¶
PyObject
PySide2.QtGui.QMatrix.
determinant
(
)
¶
qreal
Returns the matrix’s determinant.
PySide2.QtGui.QMatrix.
dx
(
)
¶
qreal
Returns the horizontal translation factor.
另请参阅
translate()
基本
Matrix
Operations
PySide2.QtGui.QMatrix.
dy
(
)
¶
qreal
Returns the vertical translation factor.
另请参阅
translate()
基本
Matrix
Operations
PySide2.QtGui.QMatrix.
inverted
(
)
¶
PyTuple
Returns an inverted copy of this matrix.
If the matrix is singular (not invertible), the returned matrix is the identity matrix. If
invertible
is valid (i.e. not 0), its value is set to true if the matrix is invertible, otherwise it is set to false.
另请参阅
PySide2.QtGui.QMatrix.
isIdentity
(
)
¶
bool
返回
true
if the matrix is the identity matrix, otherwise returns
false
.
另请参阅
PySide2.QtGui.QMatrix.
isInvertible
(
)
¶
bool
返回
true
if the matrix is invertible, otherwise returns
false
.
另请参阅
PySide2.QtGui.QMatrix.
m11
(
)
¶
qreal
Returns the horizontal scaling factor.
另请参阅
scale()
基本
Matrix
Operations
PySide2.QtGui.QMatrix.
m12
(
)
¶
qreal
Returns the vertical shearing factor.
另请参阅
shear()
基本
Matrix
Operations
PySide2.QtGui.QMatrix.
m21
(
)
¶
qreal
Returns the horizontal shearing factor.
另请参阅
shear()
基本
Matrix
Operations
PySide2.QtGui.QMatrix.
m22
(
)
¶
qreal
Returns the vertical scaling factor.
另请参阅
scale()
基本
Matrix
Operations
PySide2.QtGui.QMatrix.
map
(
x
,
y
)
¶
x
–
qreal
y
–
qreal
Maps the given coordinates
x
and
y
into the coordinate system defined by this matrix. The resulting values are put in *``tx`` and *``ty`` , respectively.
The coordinates are transformed using the following formulas:
x' = m11*x + m21*y + dx
y' = m22*y + m12*x + dy
The point (x, y) is the original point, and (x’, y’) is the transformed point.
另请参阅
基本
Matrix
Operations
PySide2.QtGui.QMatrix.
map
(
x
,
y
)
¶
x
–
int
y
–
int
这是重载函数。
Maps the given coordinates
x
and
y
into the coordinate system defined by this matrix. The resulting values are put in *``tx`` and *``ty`` , respectively. Note that the transformed coordinates are rounded to the nearest integer.
PySide2.QtGui.QMatrix.
map
(
p
)
¶
p
–
QPainterPath
PySide2.QtGui.QMatrix.
map
(
l
)
¶
l
–
QLineF
QLineF
PySide2.QtGui.QMatrix.
map
(
l
)
¶
l
–
QLine
QLine
PySide2.QtGui.QMatrix.
map
(
p
)
¶
p
–
QPointF
QPointF
PySide2.QtGui.QMatrix.
mapRect
(
arg__1
)
¶
arg__1
–
QRect
QRect
PySide2.QtGui.QMatrix.
mapRect
(
arg__1
)
¶
arg__1
–
QRectF
QRectF
PySide2.QtGui.QMatrix.
mapToPolygon
(
r
)
¶
r
–
QRect
创建和返回
QPolygon
representation of the given
rectangle
, mapped into the coordinate system defined by this matrix.
The rectangle’s coordinates are transformed using the following formulas:
x' = m11*x + m21*y + dx
y' = m22*y + m12*x + dy
Polygons and rectangles behave slightly differently when transformed (due to integer rounding), so
matrix.map(QPolygon(rectangle))
is not always the same as
matrix.mapToPolygon(rectangle)
.
另请参阅
mapRect()
基本
Matrix
Operations
PySide2.QtGui.QMatrix.
__ne__
(
arg__1
)
¶
arg__1
–
QMatrix
bool
返回
true
if this matrix is not equal to the given
matrix
,否则返回
false
.
PySide2.QtGui.QMatrix.
__mul__
(
o
)
¶
Returns the result of multiplying this matrix by the given
matrix
.
Note that matrix multiplication is not commutative, i.e. a*b != b*a.
PySide2.QtGui.QMatrix.
__imul__
(
arg__1
)
¶
这是重载函数。
Returns the result of multiplying this matrix by the given
matrix
.
PySide2.QtGui.QMatrix.
__eq__
(
arg__1
)
¶
arg__1
–
QMatrix
bool
返回
true
if this matrix is equal to the given
matrix
,否则返回
false
.
PySide2.QtGui.QMatrix.
reset
(
)
¶
Resets the matrix to an identity matrix, i.e. all elements are set to zero, except
m11
and
m22
(specifying the scale) which are set to 1.
另请参阅
QMatrix()
isIdentity()
基本
Matrix
Operations
PySide2.QtGui.QMatrix.
rotate
(
a
)
¶
a
–
qreal
Rotates the coordinate system the given
degrees
counterclockwise.
Note that if you apply a
QMatrix
to a point defined in widget coordinates, the direction of the rotation will be clockwise because the y-axis points downwards.
Returns a reference to the matrix.
另请参阅
PySide2.QtGui.QMatrix.
scale
(
sx
,
sy
)
¶
sx
–
qreal
sy
–
qreal
Scales the coordinate system by
sx
horizontally and
sy
vertically, and returns a reference to the matrix.
另请参阅
PySide2.QtGui.QMatrix.
setMatrix
(
m11
,
m12
,
m21
,
m22
,
dx
,
dy
)
¶
m11
–
qreal
m12
–
qreal
m21
–
qreal
m22
–
qreal
dx
–
qreal
dy
–
qreal
Sets the matrix elements to the specified values,
m11
,
m12
,
m21
,
m22
,
dx
and
dy
.
Note that this function replaces the previous values.
QMatrix
provide the
translate()
,
rotate()
,
scale()
and
shear()
convenience functions to manipulate the various matrix elements based on the currently defined coordinate system.
另请参阅
QMatrix()
PySide2.QtGui.QMatrix.
shear
(
sh
,
sv
)
¶
sh
–
qreal
sv
–
qreal
Shears the coordinate system by
sh
horizontally and
sv
vertically, and returns a reference to the matrix.
另请参阅
PySide2.QtGui.QMatrix.
translate
(
dx
,
dy
)
¶
dx
–
qreal
dy
–
qreal
Moves the coordinate system
dx
along the x axis and
dy
along the y axis, and returns a reference to the matrix.
另请参阅